scholarly journals A Study of the Antarctic Surface Energy Budget Using a Polar Regional Atmospheric Model Forced with Satellite-Derived Cloud Properties

2004 ◽  
Vol 132 (2) ◽  
pp. 654-661 ◽  
Author(s):  
Michael J. Pavolonis ◽  
Jeffrey R. Key ◽  
John J. Cassano
2014 ◽  
Vol 14 (18) ◽  
pp. 9481-9509 ◽  
Author(s):  
D. P. Grosvenor ◽  
J. C. King ◽  
T. W. Choularton ◽  
T. Lachlan-Cope

Abstract. Mesoscale model simulations are presented of a westerly föhn event over the Antarctic Peninsula mountain ridge and onto the Larsen C ice shelf, just south of the recently collapsed Larsen B ice shelf. Aircraft observations showed the presence of föhn jets descending near the ice shelf surface with maximum wind speeds at 250–350 m in height. Surface flux measurements suggested that melting was occurring. Simulated profiles of wind speed, temperature and wind direction were very similar to the observations. However, the good match only occurred at a model time corresponding to ~9 h before the aircraft observations were made since the model föhn jets died down after this. This was despite the fact that the model was nudged towards analysis for heights greater than ~1.15 km above the surface. Timing issues aside, the otherwise good comparison between the model and observations gave confidence that the model flow structure was similar to that in reality. Details of the model jet structure are explored and discussed and are found to have ramifications for the placement of automatic weather station (AWS) stations on the ice shelf in order to detect föhn flow. Cross sections of the flow are also examined and were found to compare well to the aircraft measurements. Gravity wave breaking above the mountain crest likely created a~situation similar to hydraulic flow and allowed föhn flow and ice shelf surface warming to occur despite strong upwind blocking, which in previous studies of this region has generally not been considered. Our results therefore suggest that reduced upwind blocking, due to wind speed increases or stability decreases, might not result in an increased likelihood of föhn events over the Antarctic Peninsula, as previously suggested. The surface energy budget of the model during the melting periods showed that the net downwelling short-wave surface flux was the largest contributor to the melting energy, indicating that the cloud clearing effect of föhn events is likely to be the most important factor for increased melting relative to non-föhn days. The results also indicate that the warmth of the föhn jets through sensible heat flux ("SH") may not be critical in causing melting beyond boundary layer stabilisation effects (which may help to prevent cloud cover and suppress loss of heat by convection) and are actually cancelled by latent heat flux ("LH") effects (snow ablation). It was found that ground heat flux ("GRD") was likely to be an important factor when considering the changing surface energy budget for the southern regions of the ice shelf as the climate warms.


2021 ◽  
Author(s):  
Andy Elvidge ◽  
Peter Kuipers Munneke ◽  
John King ◽  
Ian Renfrew ◽  
Ella Gilbert

<p>Recent ice shelf retreat on the east coast of the Antarctic Peninsula has been principally attributed to atmospherically driven melt. However, previous studies on the largest of these ice shelves—Larsen C—have struggled to reconcile atmospheric forcing with observed melt. This study provides the first comprehensive quantification and explanation of the atmospheric drivers of melt across Larsen C, using 31‐months' worth of observations from Cabinet Inlet, a 6‐month, high‐resolution atmospheric model simulation and a novel approach to ascertain the surface energy budget (SEB) regime. The dominant meteorological controls on melt are shown to be the occurrence, strength, and warmth of mountain winds called foehn. At Cabinet Inlet, foehn occurs 15% of the time and causes 45% of melt. The primary effect of foehn on the SEB is elevated turbulent heat fluxes. Under typical, warm foehn conditions, this means elevated surface heating and melting, the intensity of which increases as foehn wind speed increases. Less commonly—due to cooler‐than‐normal foehn winds and/or radiatively warmed ice—the relationship between wind speed and net surface heat flux reverses. This explains the seemingly contradictory results of previous studies. In the model, spatial variability in cumulative melt across Larsen C is largely explained by foehn, with melt maxima in inlets reflecting maxima in foehn wind strength. However, most accumulated melt (58%) occurs due to solar radiation in the absence of foehn. A broad north‐south gradient in melt is explained by the combined influence of foehn and non‐foehn conditions.</p>


2014 ◽  
Vol 14 (5) ◽  
pp. 5771-5835
Author(s):  
D. P. Grosvenor ◽  
J. C. King ◽  
T. W. Choularton ◽  
T. Lachlan-Cope

Abstract. Mesoscale model simulations are presented of a westerly föhn event over the Antarctic Peninsula mountain ridge and onto the Larsen C Ice Shelf, just south of the recently collapsed Larsen B Ice Shelf. Aircraft observations showed the presence of föhn jets descending near to the ice shelf surface with maximum wind speeds at 250–350 m in height. Surface flux measurements suggested that melting was occurring. Simulated profiles of wind speed, temperature and wind direction were very similar to the observations. However, the good match only occurred at a model time corresponding to ∼9 h before the aircraft observations were made since the model föhn jets died down after this. Through comparison to an Automatic Weather Station (AWS) on the ice shelf surface (east side of the ridge) this was attributed to problems with the time evolution of the large scale meteorology of the analysis used to nudge the upper levels of the model. Timing issues aside, the otherwise good comparison between the model and observations gave confidence that the model flow structure was similar to that in reality. Details of the model jet structure are explored and discussed and are found to have ramifications for the placement of AWS stations on the ice shelf in order to detect föhn flow. Cross sections of the flow are also examined and were found to compare well to the aircraft measurements. Gravity wave breaking above the mountain crest likely created a situation similar to hydraulic flow and allowed föhn flow and ice shelf surface warming to occur despite strong upwind blocking, which in previous studies of this region has generally not been considered. The surface energy budget of the model during the melting periods showed that the net downwelling shortwave surface flux was the largest contributor to the melting energy, indicating that the cloud clearing effect of föhn events is likely to be the most important factor for increased melting relative to non-föhn days. The results also indicate that the warmth of the föhn jets through sensible heat flux may not be critical in causing melting beyond boundary layer stabilization effects (which may help to prevent cloud cover and suppress loss of heat by convection) and are actually cancelled by latent heat flux effects (snow ablation). It was found that ground heat flux was likely to be an important factor when considering the changing surface energy budget for the southern regions of the ice shelf as the climate warms.


2014 ◽  
Vol 53 (9) ◽  
pp. 2114-2129 ◽  
Author(s):  
Prathap Ramamurthy ◽  
Elie Bou-Zeid ◽  
James A. Smith ◽  
Zhihua Wang ◽  
Mary L. Baeck ◽  
...  

AbstractUrban facets—the walls, roofs, and ground in built-up terrain—are often conceptualized as homogeneous surfaces, despite the obvious variability in the composition and material properties of the urban fabric at the subfacet scale. This study focuses on understanding the influence of this subfacet heterogeneity, and the associated influence of different material properties, on the urban surface energy budget. The Princeton Urban Canopy Model, which was developed with the ability to capture subfacet variability, is evaluated at sites of various building densities and then applied to simulate the energy exchanges of each subfacet with the atmosphere over a densely built site. The analyses show that, although all impervious built surfaces convert most of the incoming energy into sensible heat rather than latent heat, sensible heat fluxes from asphalt pavements and dark rooftops are 2 times as high as those from concrete surfaces and light-colored roofs. Another important characteristic of urban areas—the shift in the peak time of sensible heat flux in comparison with rural areas—is here shown to be mainly linked to concrete’s high heat storage capacity as well as to radiative trapping in the urban canyon. The results also illustrate that the vegetated pervious soil surfaces that dot the urban landscape play a dual role: during wet periods they redistribute much of the available energy into evaporative fluxes but when moisture stressed they behave more like an impervious surface. This role reversal, along with the direct evaporation of water stored over impervious surfaces, significantly reduces the overall Bowen ratio of the urban site after rain events.


2020 ◽  
Author(s):  
Jonathan Day ◽  
Gabriele Arduini ◽  
Irina Sandu ◽  
Linus Magnusson ◽  
Anton Beljaars ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 954 ◽  
Author(s):  
Claudio Cassardo ◽  
Seon Park ◽  
Sungmin O ◽  
Marco Galli

This study investigates the potential changes in surface energy budget components under certain future climate conditions over the Alps and Northern Italy. The regional climate scenarios are obtained though the Regional Climate Model version 3 (RegCM3) runs, based on a reference climate (1961–1990) and the future climate (2071–2100) via the A2 and B2 scenarios. The energy budget components are calculated by employing the University of Torino model of land Processes Interaction with Atmosphere (UTOPIA), and using the RegCM3 outputs as input data. Our results depict a significant change in the energy budget components during springtime over high-mountain areas, whereas the most relevant difference over the plain areas is the increase in latent heat flux and hence, evapotranspiration during summertime. The precedence of snow-melting season over the Alps is evidenced by the earlier increase in sensible heat flux. The annual mean number of warm and cold days is evaluated by analyzing the top-layer soil temperature and shows a large increment (slight reduction) of warm (cold) days. These changes at the end of this century could influence the regional radiative properties and energy cycles and thus, exert significant impacts on human life and general infrastructures.


Author(s):  
G. M. Martínez ◽  
A. Vicente‐Retortillo ◽  
A. R. Vasavada ◽  
C. E. Newman ◽  
E. Fischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document